博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
CNN的学习笔记
阅读量:5297 次
发布时间:2019-06-14

本文共 1196 字,大约阅读时间需要 3 分钟。

1、卷积核的概念,卷积核的size,就是滑动窗口的大小,例如原始数据为28*28的手写数字,滑动窗口size为5*5,则卷积核的size为5*5。卷积核就是权重集合,就是5*5+1。1表示偏置项。卷积核就是输入层的25个点+1个偏置项,链接卷积层的一个点后的权重值集合W。

2、feature map 就是通过卷积以后,计算的输出的神经元值的集合,比如输入28*28的手写数字,经过5*5的卷积核卷积,通过sigmod的函数计算得到的输出神经元的值的集合24*24就是一个feature map,由于一般用多个卷积核进行卷积,假设6个,那么第二层就有6*24*24的数据,即6个featuremap。

3、每一层内的权值即卷积核是共享的,值是一样的。例如6个featuremap,那么输入层到某一个featuremap的时候有24*5*5个链接,如果按照普通的神经网络的话就有24*5*5个w需要学习,但是权值共享以后(即权值相同),就只要学习5*5个w权值即可。因为另外23个5*5的值与这个5*5是一样的。

4、pool又叫subsampling,就是子采样。其实就是把图片模糊化,目的是降维。例如24*24的C1层经过pooling后,变为6个14*14的featuremap。S3层的卷积核一般为2*2,即卷积核是1/4。其实就是w=1/4。c层与s层的链接w是不需要学习的。S3层的featuremap(其实就相当于这层的值)也不用sigmod计算,而是直接把上一层C2层的featuremap直接mean pooling。均值化即可。

5、C3层也是卷积层,同样采用5*5的卷积核。要从上面的6个subsampling的featuremap中链接。这一层的featuremap为16个,也就是用16个卷积核去卷积。C3中的每个featuremap是连接到S2中的所有6个或者几个featuremap的,表示本层的特征map是上一层提取到的特征map的不同组合(这个做法也并不是唯一的)。为什么不把S2中的每个特征图连接到每个C3的特征图呢?原因有2点。第一,不完全的连接机制将连接的数量保持在合理的范围内。第二,也是最重要的,其破坏了网络的对称性。由于不同的特征图有不同的输入,所以迫使他们抽取不同的特征。

 

6、最后一层输出层,采用全连接的形式   F6层有84个单元(之所以选这个数字的原因来自于输出层的设计),与C5层全相连。有10164个可训练参数。如同经典神经网络,F6层计算输入向量和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数产生单元i的一个状态。

7、cnn源码中的d表示残值,就是对cost function 求导数的来的,步骤如下

转载于:https://www.cnblogs.com/alexanderkun/p/4109159.html

你可能感兴趣的文章
Spring面试题
查看>>
窥视SP2010--第一章节--SP2010开发者路线图
查看>>
MVC,MVP 和 MVVM 的图示,区别
查看>>
C语言栈的实现
查看>>
代码为什么需要重构
查看>>
TC SRM 593 DIV1 250
查看>>
SRM 628 DIV2
查看>>
2018-2019-2 20165314『网络对抗技术』Exp5:MSF基础应用
查看>>
Python-S9-Day127-Scrapy爬虫框架2
查看>>
使用gitbash来链接mysql
查看>>
SecureCRT的使用方法和技巧(详细使用教程)
查看>>
右侧导航栏(动态添加数据到list)
查看>>
81、iOS本地推送与远程推送详解
查看>>
虚拟DOM
查看>>
uva 11468 Substring
查看>>
自建数据源(RSO2)、及数据源增强
查看>>
BootStrap2学习日记2--将固定布局换成响应式布局
查看>>
关于View控件中的Context选择
查看>>
2018icpc徐州OnlineA Hard to prepare
查看>>
Spark的启动进程详解
查看>>